AVmodels.ru - информация о моделях самолетов, моторах, аппаратуре радиоуправления
 
AVmodels.ru - модели самолетов
 

авиамоделизм - мир увлеченных

Главная
Авиамодели
Двигатели
Топливо
Воздушный винт
Статьи
Обратная связь
Каталог ссылок
Барахолка
Фотогалерея
Форум

Специальное место)

  Главная > Статьи > Аппаратура радиоуправления > Отказы RC-аппаратуры

Функциональные отказы бортового оборудования
при увеличении напряжения питания

Функциональными отказами аппаратуры я называю любые периодические отклонения от нормального режима ее работы, вызванные каким-либо внешним нештатным воздействием. Функциональные отказы прекращаются, и аппаратура восстанавливает свою работоспособность, после прекращения внешнего нештатного воздействия. Но к сожалению, это происходит не всегда. Хотя можно уверенно сказать, что любому фатальному отказу обычно предшествует функциональный отказ, длящийся какое-то время.

В нашем случае причиной (внешним воздействием), вызывающей функциональный отказ, будет повышенное напряжение питания.

Возникновение функционального отказа означает только одно - какой-то (или какие-то) элементы радиоэлектронного устройства был выведен из рабочего режима. Разумеется, речь может идти только об активном полупроводниковом элементе: транзисторе, микросхеме или (в редких случаях) о диоде. Резисторы, индуктивности и конденсаторы, как пассивные элементы, не подвержены выходу из рабочего режима при изменении напряжения питания (вариант фатального отказа мы уже рассмотрели), поэтому функциональный отказ не может возникнуть из-за этих элементов.

Одним из самых типичных и довольно часто возникающих функциональных отказов является рассогласование уровней сигнала между отдельными каскадами аппаратуры. Такое рассогласование, в принципе, может возникнуть как внутри самого приемника (допустим, между микросхемой радиоприемного тракта и микросхемой декодера), так и между приемником и рулевой машинкой.

Не нужно объяснять, что любое радиоэлектронное устройство при разработке оптимизируется для работы от определенного напряжения питания. Наилучшие электрические параметры схема будет иметь только в том случае, если напряжение питания будет равно или близко к расчетному. Но так как RC-аппаратура предназначена для работы от аккумуляторной батареи, ЭДС которой довольно сильно изменяется во времени, абсолютное большинство радиоприемных устройств имеет встроенный стабилизатор напряжения.. Это устройство поддерживает напряжение в цепях питания приемника на каком-то определенном уровне, заведомо меньшем, чем напряжение заряженного аккумулятора. Обычно на выходе стабилизатора напряжения равно 3,3 вольта. Этот уровень напряжения будет стабильным до тех пор, пока ЭДС аккумулятора не станет меньше примерно 4-х вольт. И даже если вы добавите в аккумулятор несколько банок, увеличив тем самым его напряжение до 7-10 вольт, встроенный в приемник стабилизатор все равно будет подавать на схему те же самые 3,3 вольта. С одной стороны это стабилизирует все рабочие режимы схемы, гарантируя нормальную их работоспособность, а с другой стороны еще и защищает от возникновения фатального отказа приемника.

Казалось бы - все должно быть нормально. Но борт "вдруг" перестает работать, как только вы добавляете лишний элемент в аккумулятор. Рулевые машинки или перестают работать вообще, или хаотически дергаются, только изредка пытаясь следовать за ручкой управления. В чем же тут дело?

А дело как раз в том, что после увеличения напряжения питания, где-то произошло рассогласование уровней. Я уже говорил, что есть два наиболее вероятных места такого рассогласования.

Первое - это рассогласование уровней сигнала между микросхемой радиоприемника и микросхемой декодера, и второе - между выходом декодера и рулевой машинкой. Механизм рассогласования и в том и в другом случае одинаков, поэтому я расскажу о нем на примере первого варианта.

Для того, чтобы понять, почему происходит такое рассогласование, нужно вспомнить, как работают цифровые микросхемы - неотъемлемые составляющие декодера и входных цепей рулевых машинок.

Образно говоря, цифровая микросхема это выключатель, который управляется под воздействием входного сигнала (или нескольких сигналов). В цифровых микросхемах уровень выходного сигнала может иметь только два значения - уровень логической единицы, или уровень логического нуля. Уровень единицы близок к уровню напряжения питания микросхемы (обычно он чуть меньше, примерно на 0,3-0,7 вольта), а уровень нуля на такую же величину больше потенциала общего провода (массы).

Входные сигналы для управления цифровой микросхемой также могут иметь два значения. Но здесь обычно говорят о пороге срабатывания, т.е. о напряжении на входе микросхемы, при котором ее выходной уровень изменяется на противоположный. У большинства цифровых (логических) микросхем это напряжение (порог срабатывания) близко к половине питающего напряжения.

А вот теперь давайте рассмотрим такую ситуацию. Микросхема радиоприемника питается от встроенного стабилизатора напряжения 3,3 вольта. Очевидно, что в этом случае выходной сигнал приемника не может быть выше 3,0-3,3 вольт. А на микросхему декодера питание подается непосредственно от аккумуляторной батареи. Если напряжение аккумулятора стандартное, т.е. равно 4,8 вольта, то порог срабатывания входной логики декодера будет равен ~ 2,4 вольта, т.е. уровня выходного каскада приемника (~3,0 вольта) достаточно для того, чтобы микросхема декодера "переключилась". Но как только мы увеличим напряжение питания до 6,0 вольт, до 3,0 вольт возрастет и уровень срабатывания входной логики декодера, и уровня выходного сигнала приемника скорее всего окажется уже не достаточно для гарантированного переключения входной логики декодера. Как говорится - приехали...

Если же весь приемник, включая декодер, питается через стабилизатор напряжения, то между собой они конфликтовать не будут, их работоспособность гарантирована при очень больших отклонениях напряжения питания. Но тогда конфликт обязательно возникнет уже в другом месте - на входе логики рулевой машинки. Ведь теперь уровень выходного сигнала декодера будет всего 3,0 вольта!

Конечно, есть специальные способы (кстати - достаточно простые), позволяющие обеспечить согласование каскадов при разной величине питающего напряжения, но далеко не факт, что фирмы производители сервомеханизмов для радиоуправляемых моделей предусмотрели, что кто-то из вас захочет поиздеваться над их изделием, загоняя его в непредусмотренный режим работы...

Ну и в заключение проанализируем, что же побуждает нас увеличивать количество элементов в аккумуляторе, и что мы будем иметь, реализовав эту задумку.

Что побуждает?

1) Желание увеличить время работы борта от аккумулятора;

2) Желание увеличить усилие и быстродействие стандартных рулевых машинок.

Других причин, по которым стоило бы увеличивать напряжение аккумулятора я не вижу...

А будем ли мы это иметь, и если да, то какой ценой?

Что касается существенного увеличения времени работы от одного аккумулятора, то вряд ли... Давайте считать:

Увеличив количество банок, без изменения их емкости, мы прежде всего начнем терять энергию на тепловых потерях в стабилизаторе напряжения - ведь для того, чтобы подать положенные 3,3 вольта на приемник, стабилизатору придется "гасить" на себе лишние 2-3 вольта. Это - прямые потери, как говорится - "деньги на ветер".

Что касается выигрыша по времени, он все-таки будет, но очень не значительный. Объясню. Казалось бы, добавив в аккумулятор лишнюю банку-две, мы пропорционально продлеваем время работы приемника (в целом) за счет стабилизатора - он дольше сможет "высасывать" энергию из батареи. Но это - самообман. До тех пор, пока каждая банка аккумулятора выдает стабильные 1,2 вольта (длительный рабочий режим), "лишнее" напряжение будет греть воздух. Время этого периода работы практически не увеличится, а как станет ясно дальше, может даже и сократиться! И только когда аккумулятор отдаст примерно 80-90% запасенной энергии, и напряжение на нем начнет резко снижаться, мы сможем получить какой-то временной выигрыш - действительно, аккумулятор из пяти, а тем более из шести банок, сможет НА НЕСКОЛЬКО МИНУТ дольше четырехбаночного аккумулятора развивать суммарную ЭДС на уровне 4,0 вольт, необходимых для нормальной работы стабилизатора. Но это будет работа, что называется, "на грани фола", и никто не сможет гарантировать стабильности этого режима. Это касается приемника.

С рулевой машинкой дела будут обстоять еще хуже. Эти устройства обычно не имеют внутреннего стабилизатора напряжения. Следовательно, увеличение напряжения питания однозначно вызовет пропорциональное увеличение тока во всех ее цепях, и квадратичное увеличение потребляемой мощности. А это, в свою очередь, приведет к ускоренному разряду аккумулятора!

Конечно, выигрыш в усилии, развиваемом РМ будет налицо, да и ее "скорострельность" увеличится, но все знают, что бесплатный сыр бывает только в мышеловке. Двух-трехкратное увеличение снимаемой с двигателя мощности еще больше ускорит разряд аккумулятора, увеличит износ щеток и коллектора электромотора, износ осей и зубьев шестерен редуктора и увеличение люфтов. Повышенное искрение коллекторного узла электромотора будет дополнительно провоцировать выход из строя силовых ключей управляющей микросхемы РМ. Ресурс всего устройства сократится однозначно, и довольно сильно. К тому же не исключена и простая механическая поломка любой детали редуктора (ведь детали не рассчитаны на передачу повышенных усилий!), качалки, тяг, или даже рулей самой модели.

Думаю, дальше сгущать краски не имеет смысла...

Школа дядьки Глайдера
И.В. Карпунин (aka Glider)

Обсудить на форуме

Ваша реклама



Copyright © 2007-2024 г. «AVmodels.ru»
Использование материалов сайта разрешается только с указанием ссылки на первоисточник.

Top.Mail.Ru